MINISTÉRIO DA EDUCAÇÃO UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE CIÊNCIAS EXATAS

Programa de Pós-Graduação em Estatística e Experimentação Agropecuária

Prova do Processo Seletivo para o Mestrado 2013/01

Número Inscrição:	Data:/
1) Calcule a derivada da função $f(x) = e^{x^2/3} \operatorname{sen}(5-3x) + \frac{1}{2x} - 333$	
2) Calcule todos os valores de x nos quais a função $f(x) = \frac{x^4}{4} - \frac{x^3}{3} - x^2 + 5$	tem máximo local.
3) Resolva o sistema linear	
-x+2y-3z=0	
2x + y = -1	
4x - 2y + 5z = 1	

Informação:
$$\begin{bmatrix} -1 & 2 & -3 \\ 2 & 1 & 0 \\ 4 & -2 & 5 \end{bmatrix}^{-1} = \begin{bmatrix} -5 & 4 & -3 \\ 10 & -7 & 6 \\ 8 & -6 & 5 \end{bmatrix}$$

4) Suspeitando que os estudantes da UFLA são Avatares, cuja altura média é de 3 metros, um pesquisador resolver testar sua hipótese. Para isso, ele obteve uma amostra de tamanho n = 10 estudantes e os resultados das alturas individuais são:

Testar a hipótese de que a média µ da altura dos estudantes da UFLA seja igual a 3,0 metros, que se não for rejeitada, ratificará a evidência de que os estudantes são Avatares. Adote um coeficiente de confiança de 95%. Dê todos os detalhes do teste e apresente a conclusão final.

Dado: $t_{0.025; \nu=9}$ = 2,262.

- 5) Algumas definições são importantes na estatística no que se refere a inferência. Responder de forma objetiva as seguintes questões:
 - a) O que é o erro tipo I?
 - b) Como normalmente é representada e o que significa a probabilidade de se cometer o erro tipo I?
 - c) Os erros tipo I e tipo II possuem probabilidades que são inversamente proporcionais. Assim, se fixarmos em um teste, a probabilidade de se cometer o erro tipo I, como podemos reduzir a probabilidade de cometermos o erro tipo II?
- 6) Com a consolidação da democracia e eleições regulares, pesquisas de opinião têm ganhado papel central no Brasil. Relacionamos abaixo alguns exemplos disto.
 - a) Recentemente um jornalista perguntou no auditório de um Congresso de Estatística por que motivo o tamanho amostral das pesquisas de opinião era sempre próximo do inverso do quadrado da margem de erro apresentada na pesquisa e foi contestado por um pesquisador que disse que a fórmula estava errada. Quem tem a razão e por quê?
 - b) Um juiz eleitoral decidiu pela não divulgação de uma pesquisa de opinião em uma cidade do interior de Minas Gerais porque o nível de confiança da pesquisa era de 95% e a margem de erro era de 3%, com a alegação de que as duas grandezas não somavam 100%. O juiz tem razão? Por quê?
- 7) A tabela a seguir relaciona o número de jogos com determinado número de gols em 380 partidas de um campeonato de futebol. Teste a hipótese de que o número de gols segue a distribuição de Poisson:

$$P(X = x_i) = \frac{e^{-\lambda} \lambda^{x_i}}{x_i!}.$$

Gols	Jogos	
0		21
1		65
2		96
3		76
4		74
5		31
6		10
>6		7

- 8) Um experimento com a cultura do café comparou as produtividades, em sacas/ha, de cinco cultivares, usando um delineamento em blocos casualizados com quatro repetições. A parcela constou de cinco fileiras de nove plantas, no espaçamento de 3x1 (três metros entre as fileiras e um metro entre as plantas dentro da fileira). A parcela útil considerou as três fileiras centrais, eliminando-se ainda uma planta na cabeceira de cada linha.
 - i. O experimento tinha quantas plantas de café?
 - ii. Qual foi o número total de parcelas da pesquisa?
 - iii. Quantas plantas ficaram na bordadura de cada parcela?
 - iv. Qual foi o número de plantas de cada parcela útil?
 - v. Qual foi o número de parcelas de cada bloco?
- 9) Um experimento com a cultura do milho comparou as produtividades, em t/ha, de cinco cultivares, usando um delineamento em blocos casualizados com cinco repetições. A parcela constou de quatro linhas de plantio de 6m de comprimento espaçadas de 0,9m. A parcela útil considerou as duas linhas centrais, eliminando-se ainda um metro de cada extremidade. A semeadura do milho foi feita de forma que garantisse cinco plantas por metro de linha. A análise de variância e o teste F é a seguinte:

Fontes de Variação	GL	SQ	QM	$\mathbf{F_c}$
Cultivares				
Blocos		7,80		
Erro Experimental				
Total		49,90		

Sendo dados:

- Totais das cultivares foram: $T_A = 37.5$; $T_B = 24.0$; $T_C = 32.0$; $T_D = 31.0$; $T_E = 40.5$;
- Total geral: G = 165.0;

- Coeficiente de variação:
$$CV = \frac{100\sqrt{QM \ Erro}}{\overline{V}} = 11,74\%$$

- i. Complete a análise de variância. Aplique o este F e discuta os resultados.
- ii. Aplique o teste de Tukey ($\alpha = 5\%$) e comente os resultados;
- iii. Compare as cultivares "A e B" juntas contra as cultivares "C, D e E" juntas pelo teste de Scheffé ($\alpha = 5\%$). Comente os resultados;
- iv. Compare a cultivar "B" contra as cultivares "C, D e E" juntas pelo teste de Scheffé ($\alpha = 5\%$). Comente os resultados.

$$DMS_{\alpha} = \sqrt{\left(\text{I-1}\right)F_{\alpha}.\ V\hat{a}r\left(\hat{y}\right)}; \quad V\hat{a}r\left(\hat{y}\right) = \frac{\text{QM Erro Experimental}}{J} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experimental}}{J}} \sum_{i} C_{i}^{2}; \quad DMS_{\alpha} = q_{\alpha} \ \sqrt{\frac{\text{QM Erro Experim$$

10) Um experimento agrícola foi conduzido em um Delineamento Inteiramente Casualizado, sendo tomadas observações em duas plantas de cada parcela. Foi medida a variável contínua Produção (ton/ha). Os dados medidos no experimento são apresentados na tabela abaixo. Apresente o resumo da análise da variância e conclua pela diferença entre tratamentos usando o teste F.

Trat. A	Trat. B	Trat. C	Trat. D
84	111	64	105
93	103	71	72
85	140	111	105
88	105	96	112
100	111	97	125
86	124	90	117

Apêndices

Tabela 1. Limites unilaterais de F ao nível $\alpha = 5\%$ de probabilidade $(v_1 - n^2)$ de graus de liberdade do numerador; $v_2 - n^2$ de graus de liberdade do denominador).

					ν_1					
v_2	1	2	3	4	5	6	7	8	9	10
6	5,99	5,14	4,76	4,53	4,39	4,28	4,21	4,15	4,10	4,06
7	5,59	4,74	4,35	4,12	3,97	3,87	3,79	3,73	3,68	3,64
8	5,32	4,46	4,07	3,84	3,69	3,58	3,50	3,44	3,39	3,35
9	5,12	4,26	3,86	3,63	3,48	3,37	3,29	3,23	3,18	3,14
10	4,96	4,10	3,71	3,48	3,33	3,22	3,14	3,07	3,02	2,98
11	4,84	3,98	3,59	3,36	3,20	3,09	3,01	2,95	2,90	2,85
12	4,75	3,89	3,49	3,26	3,11	3,00	2,91	2,85	2,80	2,75
13	4,67	3,81	3,41	3,18	3,03	2,92	2,83	2,77	2,71	2,67
14	4,60	3,74	3,34	3,11	2,96	2,85	2,76	2,70	2,65	2,60
15	4,54	3,68	3,29	3,06	2,90	2,79	2,71	2,64	2,59	2,54
16	4,49	3,63	3,24	3,01	2,85	2,74	2,66	2,59	2,54	2,49
17	4,45	3,59	3,20	2,96	2,81	2,70	2,61	2,55	2,49	2,45
18	4,41	3,55	3,16	2,93	2,77	2,66	2,58	2,51	2,46	2,41
19	4,38	3,52	3,13	2,90	2,74	2,63	2,54	2,48	2,42	2,38
20	4,35	3,49	3,10	2,87	2,71	2,60	2,51	2,45	2,39	2,35

Tabela 2. Limites unilaterais de F ao nível C = 1% de probabilidade ($v_1 - n^0$ de graus de liberdade do numerador; $v_2 - n^0$ de graus de liberdade do denominador).

31	v_1										
V_2	1	2	3	4	5	6	7	8	9	10	
6	13,75	10,92	9,77	9,15	8,75	8,47	8,26	8,10	7,98	7,87	
7	12,25	9,55	8,45	7,85	7,46	7,19	6,99	6,84	6,72	6,62	
8	11,26	8,65	7,59	7,01	6,63	6,37	6,18	6,03	5,91	5,81	
9	10,56	8,02	6,99	6,42	6,06	5,80	5,61	5,47	5,35	5,26	
10	10,04	7,56	6,55	5,99	5,64	5,39	5,20	5,06	4,94	4,85	
11	9,65	7,21	6,21	5,67	5,32	5,07	4,89	4,74	4,63	4,54	
12	9,33	6,93	5,95	5,41	5,06	4,82	4,64	4,50	4,39	4,30	
13	9,07	6,70	5,74	5,21	4,86	4,62	4,44	4,30	4,19	4,10	
14	8,86	6,51	5,56	5,04	4,69	4,46	4,28	4,14	4,03	3,94	
15	8,68	6,36	5,42	4,89	4,56	4,32	4,14	4,00	3,89	3,80	
16	8,53	6,23	5,29	4,77	4,44	4,20	4,03	3,89	3,78	3,69	
17	8,40	6,11	5,18	4,67	4,34	4,10	3,93	3,79	3,68	3,59	
18	8,29	6,01	5,09	4,58	4,25	4,01	3,84	3,71	3,60	3,51	
19	8,18	5,93	5,01	4,50	4,17	3,94	3,77	3,63	3,52	3,43	
20	8,10	5,85	4,94	4,43	4,10	3,87	3,70	3,56	3,46	3,37	

Tabela 3. Valores da amplitude total estudentizada (q), do teste de **Tukey** ao nível $\alpha = 5\%$ de probabilidade ($\mathbf{I} - \mathbf{n}^{\circ}$ de tratamentos; $\mathbf{v}_2 - \mathbf{n}^{\circ}$ de graus de liberdade do erro experimental).

	I									
$ \mathbf{v}_2 $	2	3	4	5	6	7	8	9	10	11
9	3,20	3,95	4,42	4,76	5,02	5,24	5,43	5,60	5,74	5,87
10	3,15	3,88	4,33	4,65	4,91	5,12	5,31	5,46	5,60	5,72
11	3,11	3,82	4,26	4,57	4,82	5,03	5,20	5,35	5,49	5,61
12	3,08	3,77	4,20	4,51	4,75	4,95	5,12	5,27	5,40	5,51
13	3,06	3,74	4,15	4,45	4,69	4,89	5,05	5,19	5,32	5,43
14	3,03	3,70	4,11	4,41	4,64	4,83	4,99	5,13	5,25	5,36
15	3,01	3,67	4,08	4,37	4,60	4,78	4,94	5,08	5,20	5,31
16	3,00	3,65	4,05	4,33	4,56	4,74	4,90	5,03	5,15	5,26
17	2,98	3,63	4,02	4,30	4,52	4,71	4,86	4,99	5,11	5,21
18	2,97	3,61	4,00	4,28	4,50	4,67	4,82	4,96	5,07	5,17
19	2,96	3,59	3,98	4,25	4,47	4,65	4,79	4,92	5,04	5,14
20	2,95	3,58	3,96	4,23	4,45	4,62	4,77	4,90	5,01	5,11

Tabela 4. Distribuição Qui-Quadrado – Valores de χ^2 para $P(\chi^2 > \chi_c^2) = \alpha$ com $\alpha = 0.995; 0.990; 0.975; 0.950; 0.900; 0.750 e 0.500.$

ν	0,995	0,990	0,975	0,950	0,900	0,750	0,500
1	0,000039	0,000157	0,000982	0,003932	0,015791	0,101532	0,455
2	0,010025	0,020101	0,050636	0,102587	0,210721	0,575364	1,386
3	0,071721	0,114831	0,215793	0,351843	0,584369	1,213	2,366
4	0,206989	0,297109	0,484418	0,710723	1,064	1,923	3,357
5	0,411742	0,554298	0,831212	1,145	1,610	2,675	4,351
6	0,675727	0,872090	1,237	1,635	2,204	3,455	5,348
7	0,989256	1,239	1,690	2,167	2,833	4,255	6,346
8	1,344	1,646	2,180	2,733	3,490	5,071	7,344
9	1,735	2,088	2,700	3,325	4,168	5,899	8,343
10	2,156	2,558	3,247	3,940	4,865	6,737	9,342

Tabela 5. Distribuição Qui-Quadrado – Valores de χ^2 para $P(\chi^2 > \chi_c^2) = \alpha$ com $\alpha = 0,500; 0,250; 0,100; 0,0,050; 0,025; 0,010 e 0,005.$

ν	0,500	0,250	0,100	0,050	0,025	0,010	0,005
1	0,454940	1,323	2,706	3,841	5,024	6,635	7,879
2	1,386	2,773	4,605	5,991	7,378	9,210	10,597
3	2,366	4,108	6,251	7,815	9,348	11,345	12,838
4	3,357	5,385	7,779	9,488	11,143	13,277	14,860
5	4,351	6,626	9,236	11,070	12,833	15,086	16,750
6	5,348	7,841	10,645	12,592	14,449	16,812	18,548
7	6,346	9,037	12,017	14,067	16,013	18,475	20,278
8	7,344	10,219	13,362	15,507	17,535	20,090	21,955
9	8,343	11,389	14,684	16,919	19,023	21,666	23,589
10	9,342	12,549	15,987	18,307	20,483	23,209	25,188