UNIVERSIDADE FEDERAL DE LAVRAS DEPARTAMENTO DE ESTATÍSTICA

Programa de Pós-Graduação em Estatística e Experimentação Agropecuária

Prova do Processo Seletivo para Doutorado 2019-2

N^{o}	de	inscrição	do	candidato:	
---------	----	-----------	----	------------	--

- Utilizar APENAS o número de inscrição para identificar a sua prova;
- A interpretação das questões é parte da avaliação;
- Indique todos os cálculos organizadamente;
- São DEZ (10) questões, valendo UM (1) ponto cada, totalizando 10 pontos;
- O tempo máximo para a realização desta prova é de 4 horas;
- A prova pode ser feita a lápis ou caneta (azul ou preta) e é permitido utilizar somente a calculadora.
- BOA SORTE!!

(**Questão 1**) Sendo a função f(x) não negativa para todo $x \in \Re$ e $\int_{-\infty}^{+\infty} f(x) dx = 1$, considere conhecido o número real m que satisfaz $\int_{-\infty}^{m} f(x) dx = \frac{1}{2} = \int_{m}^{+\infty} f(x) dx$. Prove que o valor de k que minimiza a função $h(k) = \int_{-\infty}^{+\infty} |x-k| f(x) dx$ é k=m.

Sugestão: observe que $\int_{-\infty}^{+\infty} |x-k| f(x) dx = \int_{-\infty}^{k} (k-x) f_X(x) dx + \int_{k}^{\infty} (x-k) f_X(x) dx = \text{que},$ $F_X(k) = \int_{-\infty}^{k} f_X(x) dx \text{ e, portanto, } \int_{k}^{\infty} f_X(x) dx = 1 - F_X(k).$

(Questão 2) Considerando que a função f(x) é não negativa para todo $x \in \Re$ e $\int\limits_{-\infty}^{+\infty} f(x) dx = 1$, pode-se dizer que uma variável aleatória X tem distribuição Logística se, e somente se, sua distribuição acumulada de probabilidade é dada por $F_X(x) = \left[1 + e^{-(x-\alpha)/\beta}\right]^{-1}$, com $-\infty < \alpha < +\infty$ e $\beta > 0$. Diz-se que uma variável aleatória Y tem distribuição Gumbel se, e somente se, sua distribuição acumulada de probabilidade é dada por $F_Y(y) = e^{-e^{-(y-\alpha)/\beta}}$, com $-\infty < \alpha < +\infty$ e $\beta > 0$. Pede-se:

- a) Determine a densidade $f_X(x) = \frac{d}{dx} F_X(x)$;
- b) Determine a densidade $f_Y(y) = \frac{d}{dy} F_Y(y)$.

(**Questão 3**) Dado o espaço amostral $\Omega = \{1, 2, 3\}$, cujos elementos são todos equiprováveis e a σ -álgebra \Im dada por:

$$\mathfrak{I} = \{\emptyset, \{1\}, \{2,3\}, \{1,2,3\}\},\$$

então quais dos subconjuntos a seguir são considerados eventos: $A = \{2\}$, $B = \emptyset$, $C = \{1, 3\}$, $D = \{1, 2, 3\}$ e $E = \{1\}$? Justificar as escolhas.

(**Questão 4**) Se X é uma variável aleatória absolutamente contínua com suporte $S_X = [0,1]$ e sendo $F_X(x)$ a função de distribuição e $f_X(x) = 2x$ a função densidade, obter a função quantil definida por $q(p) = F_X^{-1}(p)$, para $p \in [0,1]$, em que F_X^{-1} é a função de distribuição inversa.

(**Questão 5**) Considere $X_1, X_2, ..., X_{12}$ e $Y_1, Y_2, ..., Y_6$ amostras aleatórias de duas populações normais, $X \sim Normal\left(\mu_1, 1\right)$ e $Y \sim Normal\left(\mu_2, 1\right)$, respectivamente. Para testar as hipóteses $H_0: \mu_1 = \mu_2 \times H_1: \mu_1 \neq \mu_2$ toma-se a estatística dada pela diferença das médias amostrais, $D = \overline{X} - \overline{Y}$. Pede-se:

- a) Determine a distribuição de D.
- b) Sob H_0 , normalize a distribuição de D.
- c) Com a estatística normalizada, obtida em (b), e utilizando a tabela fornecida, calcule o valor d da estatística D, tal que o teste dado por "recusar H_0 se |D| > d", tenha nível de confiança de 95%.

(**Questão 6**) Uma população tem densidade $f_X(x;\theta) = 2x/\theta^2$ com $0 \le x \le \theta$ e $0 < \theta$. Pede-se:

- a) Se X é uma observação dessa população, isto é, $X \sim f_X\left(x;\theta\right)$, calcule a esperança de X.
- b) Determine a mediana dessa população.
- c) Se X é utilizado como estimador da mediana, calcule o erro quadrático médio (EQM) desse estimador.

(**Questão 7**) Um experimento com a cultura do café comparou as produtividades, em sacas/ha, de cinco cultivares, usando o delineamento em blocos casualizados com quatro repetições. A parcela constou de cinco fileiras de nove plantas, no espaçamento de 3x1 (três metros entre as linhas e um metro entre as plantas dentro da linha). A parcela útil considerou as três fileiras centrais, eliminando-se ainda uma planta na cabeceira de cada linha. Assim,

Fontes de Variação	GL	SQ	QM	F _c
Cultivares				
Blocos	3	100,5		
Erro Experimental				
Total		427,62		

Os totais de tratamentos e o total geral foram:

$$T_A = 99.2$$
; $T_B = 112.4$; $T_C = 122.4$; $T_D = 139.2$; $T_E = 108.8$; Total Geral = 582.0.

Pede-se:

- a) Complete o quadro de análise de variância e interprete os resultados.
 - **<u>Dica:</u>** considere $F_{tab} = 3,26$.
- b) Calcule a área total da parcela, a área útil e a área da bordadura;
- c) Quantas plantas de café foram utilizadas no experimento?
- d) Aplique o teste de Tukey ($\alpha = 5\%$) e discuta os resultados indicando a(s) melhor(melhores) cultivar(es).

<u>Dica:</u> utilize o valor q = 4,51 para o quantil tabelado da amplitude estudentizada.

(**Questão 8**) Um experimento foi instalado no delineamento em blocos casualizados para avaliar a produtividade de arroz, com 4 repetições, no esquema de parcelas subdivididas. Nesse experimento avaliou-se o efeito de 5 métodos diferentes de irrigação (fator primário) e de 2 variedades (fator secundário). Pede-se:

- a) Apresente o esquema do quadro da análise de variância (ANOVA) com as Fontes de Variação (FV) e os respectivos Graus de Liberdade (GL).
- b) Explique como deve ser feito o estudo dos fatores para um experimento como este. Indique qual o erro adequado para verificar o melhor método de irrigação e qual a melhor variedade nas duas situações abaixo:
 - b.1) Interação não significativa;
 - b.2) Interação significativa.

(Questão 9) Um pesquisador da cultura do milho instalou um experimento no campo para avaliar sete cultivares onde duas delas foram melhoradas geneticamente e esperava-se obter diferença significativa entre os tratamentos. Foi utilizado o delineamento inteiramente ao acaso com duas repetições. Os resultados da análise de variância e teste F para a produtividade em t/ha (toneladas por hectare) indicou que não houve diferença entre as cultivares:

Fontes de Variação	GL	SQ	QM	$\mathbf{F_c}$	P[F>F _c]
Cultivares	6	9000	1500	3,0	0,0883
Erro Experimental	7	3500	500		
Total	13	12500			

O valor tabelado da distribuição F é $F_{(6,7)} = 3,87$ e o coeficiente de variação foi CV = 35%. O pesquisador pretende realizar um novo experimento no próximo ano para tentar detectar diferença entre as cultivares. Quais sugestões que você pode dar ao pesquisador e que sejam adequadas para que o objetivo dele seja alcançado no próximo experimento?

(**Questão 10**) Um experimento foi instalado no campo no delineamento em blocos casualizados com quatro repetições para comparar quatro variedades de arroz (A, B, C, D) em dois níveis de irrigação (1 e 2). Os resultados obtidos para as produtividades (t/ha) forneceram a seguinte análise de variância e teste F:

Fontes de Variação	GL	SQ	QM	$\mathbf{F_c}$	P[F>F _c]	
Variedades	3	2,1103	0,7034	4,39	0,0151	
Irrigação	1	0,8450	0,8450	5,28	0,0319	
Variedades*Irrigação	3	3,9850	1,3283	8,30	0,0008	
(Tratamentos)	(7)	(6,9403)				
Blocos	3	1,5370	0,5123	3,20	0,0443	
Erro Experimental	21	3,3621	0,1601			
Total	31	11,8394				

O teste F indicou que a interação (Variedades*Irrigação) é significativa ao nível de 1% de significância. Faça a análise de variância desdobrando a interação Variedades*Irrigação, estudando o efeito de Níveis de Irrigação dentro de cada Variedade. Aplique o teste F e discuta os resultados justificando o fato da interação ter sido significativa. Indique o melhor nível de Irrigação para cada variedade.

<u>Dica:</u> utilize o valor F tabelado para α =5% de $F_{(1,21)}$ = 4,32.

O quadro auxiliar é apresentado abaixo:

		Totais			
Níveis Irrigação	A B C		D	Irrigação	
1	13,1 ⁽⁴⁾	17,2	19,8	16,4	66,5 ⁽¹⁶⁾
2	16,3	15,2	15,2	14,6	61,3
Totais Variedades	29,4 ⁽⁸⁾	32,4	35,0	31,0	127,8 ⁽³²⁾

Tabela: Probabilidades α da distribuição Normal padrão N(0,1), para valores do quantil Z_t padronizado, de acordo com a seguinte afirmativa probabilística: $P(0 < Z < Z_t) = \alpha$.

$\overline{Z_t}$	0	1	2	3	4	5	6	7	8	9
0,0	0,0000	0,0040	0,0080	0,0120	0,0160	0,0199	0,0239	0,0279	0,0319	0,0359
0,1	0,0398	0,0438	0,0478	0,0517	0,0557	0,0596	0,0636	0,0675	0,0714	0,0753
0,2	0,0793	0,0832	0,0871	0,0910	0,0948	0,0987	0,1026	0,1064	0,1103	0,1141
0,3	0,1179	0,1217	0,1255	0,1293	0,1331	0,1368	0,1406	0,1443	0,1480	0,1517
0,4	0,1554	0,1591	0,1628	0,1664	0,1700	0,1736	0,1772	0,1808	0,1844	0,1879
0,5	0,1915	0,1950	0,1985	0,2019	0,2054	0,2088	0,2123	0,2157	0,2190	0,2224
0,6	0,2257	0,2291	0,2324	0,2357	0,2389	0,2422	0,2454	0,2486	0,2517	0,2549
0,7	0,2580	0,2611	0,2642	0,2673	0,2704	0,2734	0,2764	0,2794	0,2823	0,2852
0,8	0,2881	0,2910	0,2939	0,2967	0,2995	0,3023	0,3051	0,3078	0,3106	0,3133
0,9	0,3159	0,3186	0,3212	0,3238	0,3264	0,3289	0,3315	0,3340	0,3365	0,3389
1,0	0,3413	0,3438	0,3461	0,3485	0,3508	0,3531	0,3554	0,3577	0,3599	0,3621
1,1	0,3643	0,3665	0,3686	0,3708	0,3729	0,3749	0,3770	0,3790	0,3810	0,3830
1,2	0,3849	0,3869	0,3888	0,3907	0,3925	0,3944	0,3962	0,3980	0,3997	0,4015
1,3	0,4032	0,4049	0,4066	0,4082	0,4099	0,4115	0,4131	0,4147	0,4162	0,4177
1,4	0,4192	0,4207	0,4222	0,4236	0,4251	0,4265	0,4279	0,4292	0,4306	0,4319
1,5	0,4332	0,4345	0,4357	0,4370	0,4382	0,4394	0,4406	0,4418	0,4429	0,4441
1,6	0,4452	0,4463	0,4474	0,4484	0,4495	0,4505	0,4515	0,4525	0,4535	0,4545
1,7	0,4554	0,4564	0,4573	0,4582	0,4591	0,4599	0,4608	0,4616	0,4625	0,4633
1,8	0,4641	0,4649	0,4656	0,4664	0,4671	0,4678	0,4686	0,4693	0,4699	0,4706
1,9	0,4713	0,4719	0,4726	0,4732	0,4738	0,4744	0,4750	0,4756	0,4761	0,4767
2,0	0,4772	0,4778	0,4783	0,4788	0,4793	0,4798	0,4803	0,4808	0,4812	0,4817
2,1	0,4821	0,4826	0,4830	0,4834	0,4838	0,4842	0,4846	0,4850	0,4854	0,4857
2,2	0,4861	0,4864	0,4868	0,4871	0,4875	0,4878	0,4881	0,4884	0,4887	0,4890
2,3	0,4893	0,4896	0,4898	0,4901	0,4904	0,4906	0,4909	0,4911	0,4913	0,4916
2,4	0,4918	0,4920	0,4922	0,4925	0,4927	0,4929	0,4931	0,4932	0,4934	0,4936
2,5	0,4938	0,4940	0,4941	0,4943	0,4945	0,4946	0,4948	0,4949	0,4951	0,4952
2,6	0,4953	0,4955	0,4956	0,4957	0,4959	0,4960	0,4961	0,4962	0,4963	0,4964
2,7	0,4965	0,4966	0,4967	0,4968	0,4969	0,4970	0,4971	0,4972	0,4973	0,4974
2,8	0,4974	0,4975	0,4976	0,4977	0,4977	0,4978	0,4979	0,4979	0,4980	0,4981
2,9	0,4981	0,4982	0,4982	0,4983	0,4984	0,4984	0,4985	0,4985	0,4986	0,4986
3,0	0,4987	0,4987	0,4987	0,4988	0,4988	0,4989	0,4989	0,4989	0,4990	0,4990
3,1	0,4990	0,4991	0,4991	0,4991	0,4992	0,4992	0,4992	0,4992	0,4993	0,4993
3,2	0,4993	0,4993	0,4994	0,4994	0,4994	0,4994	0,4994	0,4995	0,4995	0,4995
3,3	0,4995	0,4995	0,4995	0,4996	0,4996	0,4996	0,4996	0,4996	0,4996	0,4997
3,4	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4997	0,4998
3,5	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998	0,4998
3,6	0,4998	0,4998	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,7	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,8	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999	0,4999
3,9	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000	0,5000